Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Letitia M. Gruia, ${ }^{\text {a }}$ Fernande D. Rochon ${ }^{\text {b }}$ and André \mathbf{L}. Beauchamp ${ }^{\text {a * }}$
${ }^{\mathrm{a}}$ Département de Chimie, Université de Montréal, CP 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7, and
${ }^{\mathbf{b}}$ Département de Chimie, Université du Québec à Montréal, CP 8888, Succ. Centreville, Montréal, Québec, Canada H3C 3P8

Correspondence e-mail:
andre.beauchamp@umontreal.ca

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
Disorder in main residue
R factor $=0.047$
$w R$ factor $=0.145$
Data-to-parameter ratio $=15.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[silver(I)- $\mu_{2}-1,1^{\prime}$-dimethyl- $2,2^{\prime}$-biimida-zole- $\kappa N^{3}: N^{3^{\prime}}$] nitrate 1.167 -hydrate methanol 0.33-solvate]

The title structure, $\left\{\left[\mathrm{Ag}\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4}\right)\right] \mathrm{NO}_{3} \cdot 1.167 \mathrm{H}_{2} \mathrm{O}\right.$-$\left.0.33 \mathrm{CH}_{4} \mathrm{O}\right\}_{n}$, consists of helical chains in which approximately linearly coordinated Ag atoms alternate with bridging 1, 1^{\prime} -dimethyl-2, 2^{\prime}-biimidazole ligands in a syn conformation. The environment of each Ag atom is completed by weak $\mathrm{Ag}-\mathrm{O}$ bonds to a bidentate nitrate ion.

Comment

The crystal structure of the title compound, (I), contains single-stranded helices consisting of nearly linear two-coordinate Ag atoms bridged by 1,1'-dimethyl-2,2'-biimidazole ($\mathrm{Me}_{2} \mathrm{biim}$) ligands in a syn conformation. The basic periodic pattern includes three Ag atoms and three ligands. A similar helix observed for the corresponding biimidazole complex possesses a crystallographic 3_{2} axis (Hester et al., 1997). In the present case, the three monomeric units are symmetry independent, but deviation from this higher symmetry is small. Since our Me_{2} biim complex crystallizes in a centrosymmetric space group, it contains both left- and right-handed helices.

(I)

The $\mathrm{Ag}-\mathrm{N}$ distances [2.102 (4)-2.122 (4) Å; Table 1] are typical of two-coordinate complexes with N -heterocyclic ligands. Departure from linearity about the Ag atom $[\mathrm{N}-$ $\left.\mathrm{Ag}-\mathrm{N}=163.7(2)-170.8(2)^{\circ}\right]$ is significant but not unusual. The overall environment of each Ag atom is completed by two $\mathrm{Ag}-\mathrm{O}$ 'semi-bonds' in the range $2.65-2.92 \AA$ with bidentate nitrate ions, approximately perpendicular to the $\mathrm{N}-\mathrm{Ag}-\mathrm{N}$ direction $\left(\mathrm{N} i 1-\mathrm{Ag}-\mathrm{O}=86-108^{\circ}\right)$. Formation of a variable number of such weaker bonding interactions near the 'equatorial' plane is common in Ag chemistry.

The distances and angles in the ligand do not differ appreciably from those found for the free molecule (Therrien \& Beauchamp, 1999), the most important structural modification being the conformational change from anti to syn.

Received 27 June 2005 Accepted 19 July 2005 Online 23 July 2005

Distortions commonly noted when biimidazole is chelating are absent here; coordination takes place along the lone pair direction (difference between $\mathrm{Ag}-\mathrm{Ni} 1-\mathrm{Ci} 2$ and $\mathrm{Ag}-\mathrm{N} i 1-$ $\mathrm{Ci} 5<6^{\circ}$) and the angles at the ring junction ($\mathrm{C}^{\prime}-\mathrm{Ci} 2-\mathrm{N} i 1$ and $\mathrm{C}^{\prime}-\mathrm{Ci} 2-\mathrm{Ni} 3$) differ by $<4^{\circ}$. Although the two rings of Me_{2} biim can be coplanar in the anti conformation, steric hindrance between the methyl groups forces a dihedral angle of $32.2(2)-39.5(2)^{\circ}$ between the two rings in the syn orientation found here. No such steric effect is present in the nonmethylated biimidazole- Ag compound, where the dihedral angle is smaller [23.2 (2) ${ }^{\circ}$] and probably controlled by the general structure of the helix. Our greater dihedral angle results in a longer periodic pattern (8.35 versus $7.76 \AA$) and slightly greater Ag…Ag distances (3.01-3.08 Å versus $3.00 \AA$) than in the biimidazole compound.

The $-\left[\mathrm{Ag}-\mathrm{Me}_{2} \mathrm{biim}\right]_{n}-$ helices are oriented along the a axis and their surface consists of an alternation of ligand methyl groups and free $\mathrm{O} i 2$ atoms of weakly coordinated nitrates. Small channels (also oriented along a) at the junction of four helices are filled by water or methanol molecules acting as hydrogen-bond donors toward these O atoms. Details are provided in Table 2. In the channels at $(y, z)=\left(0, \frac{1}{2}\right)$ and $\left(\frac{1}{2}, 0\right)$, water molecules $\mathrm{O} 1, \mathrm{O} 2$ and O 3 and their symmetry-equivalent counterparts across the inversion centre define a closed loop of six water molecules hydrogen-bonded to one another and anchored to nitrate O atoms. In the other channels at $(y$, $z)=(0,0)$ and $\left(\frac{1}{2}, \frac{1}{2}\right)$, one disordered methanol molecule is distributed statistically over two positions $[\mathrm{C} 1 X-\mathrm{O} 1 X$ and $\mathrm{C} 2 X-\mathrm{O} 2 X]$, forming hydrogen bonds to atoms O 21 b and O32, respectively. When the methanol (half) molecule present is $\mathrm{C} 2 X-\mathrm{O} 2 X$, an extra disordered (half) water molecule O 4 is present as well, but it interacts only weakly with its surrounding. Solvent disorder in this region explains that nitrate ion $\mathrm{N} 2 / \mathrm{O} 21 / \mathrm{O} 22 / \mathrm{O} 23$ is also disordered over two slightly different orientations.

Experimental

$\mathrm{Me}_{2} \mathrm{biim}$ was prepared according to the method of Mohanty et al. (1994), by methylation of 2,2-biimidazole obtained by the method of Fieselmann et al. (1978). To synthesize the complex, $\mathrm{AgNO}_{3}(34 \mathrm{mg}$, 0.20 mmol) was added to a stirred solution of $\mathrm{Me}_{2} \mathrm{biim}$ (32 mg , 0.20 mmol) in (undried) methanol (10 ml). The clear solution was refluxed for 1 h , the volume was reduced to 5 ml and the solution was cooled in a refrigerator. Colourless crystals of the water-methanol solvate were collected after 5 d .

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4}\right)\right] \mathrm{NO}_{3} \cdot 1.167 \mathrm{H}_{2} \mathrm{O}--$ $0.33 \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=363.44$
Monoclinic, $P 2_{b} / c$
$a=8.3497$ (1) A
$b=23.0390(2) \AA$
$c=21.3683$ (2) \AA
$\beta=93.342$ (1) ${ }^{\circ}$
$V=4103.60(7) \AA^{3}$
$Z=12$

Data collection
Bruker SMART 2000
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.25, T_{\text {max }}=0.55$
49852 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.145$
$S=1.02$
8069 reflections
527 parameters

8069 independent reflections

5837 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.053$
$\theta_{\text {max }}=73.0^{\circ}$
$h=-9 \rightarrow 8$
$k=-28 \rightarrow 28$
$l=-26 \rightarrow 26$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0883 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.94 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.58 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

Ag1-N11	2.112 (4)	$\mathrm{Ag} 2-\mathrm{O} 23 A$	2.84 (8)
Ag1-N21	2.118 (4)	Ag2-O21B	2.754 (16)
Ag1-O11	2.916 (5)	Ag2-O23B	2.91 (3)
Ag1-O13	2.873 (5)	Ag3-N51	2.102 (4)
Ag2-N31	2.117 (4)	Ag3-N61	2.108 (4)
Ag2-N41	2.122 (4)	Ag3-O31	2.834 (6)
Ag2-O21 A	2.65 (4)	Ag3-O33	2.802 (6)
$\mathrm{N} 11-\mathrm{Ag} 1-\mathrm{N} 21$	170.77 (15)	$\mathrm{C} 12-\mathrm{N} 11-\mathrm{Ag} 1$	129.7 (3)
N11-Ag1-O11	87.38 (14)	C15-N11-Ag1	123.6 (3)
N11-Ag1-O13	102.75 (15)	N11-C12-C62 ${ }^{\text {i }}$	123.6 (4)
$\mathrm{N} 21-\mathrm{Ag} 1-\mathrm{O} 11$	100.64 (14)	N13-C12-C62 ${ }^{\text {i }}$	125.2 (4)
N21-Ag1-O13	86.34 (15)	$\mathrm{C} 22-\mathrm{N} 21-\mathrm{Ag} 1$	127.5 (3)
$\mathrm{O} 11-\mathrm{Ag} 1-\mathrm{O} 13$	42.59 (12)	C25-N21-Ag1	125.1 (3)
N31-Ag2-N41	163.72 (16)	N21-C22-C32	122.8 (4)
N31-Ag2-O21A	96.4 (6)	N23-C22-C32	126.9 (5)
N31-Ag2-O23A	88.6 (16)	C32-N31-Ag2	126.5 (3)
N41-Ag2-O21A	97.9 (6)	C35-N31-Ag2	127.4 (4)
N41-Ag2-O23A	107.1 (17)	N31-C32-C22	123.6 (4)
$\mathrm{O} 21 A-\mathrm{Ag} 2-\mathrm{O} 23 A$	44.5 (8)	N33-C32-C22	125.1 (5)
N31-Ag2-O21B	107.8 (2)	$\mathrm{C} 42-\mathrm{N} 41-\mathrm{Ag} 2$	128.8 (3)
N31-Ag2-O23B	88.4 (7)	C45-N41-Ag2	124.8 (3)
N41-Ag2-O21B	86.4 (2)	N41-C42-C52	124.1 (4)
N41-Ag2-O23B	107.7 (7)	N43-C42-C52	125.3 (4)
$\mathrm{O} 21 B-\mathrm{Ag} 2-\mathrm{O} 23 \mathrm{~B}$	43.5 (3)	N51-C52-C42	123.8 (4)
N51-Ag3-N61	164.75 (15)	N53-C52-C42	126.0 (4)
$\mathrm{N} 51-\mathrm{Ag} 3-\mathrm{O} 31$	106.24 (16)	C62-N61-Ag3	127.4 (3)
N51-Ag3-O33	86.62 (17)	C65-N61-Ag3	126.9 (4)
N61-Ag3-O31	88.51 (16)	N61-C62-C12 ${ }^{\text {ii }}$	123.3 (4)
N61-Ag3-O33	107.20 (18)	N63-C62-C12 ${ }^{\text {ii }}$	125.9 (4)
O31-Ag3-O33	43.87 (16)		

Table 2
Hydrogen-bond geometry (\AA, ${ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.82	2.03	2.854 (3)	179
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{O} 23 B^{\text {iv }}$	0.82	2.15	2.974 (18)	178
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{O} 23 A^{\text {iv }}$	0.82	2.18	2.99 (4)	171
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 12^{\mathrm{v}}$	0.82	2.12	2.937 (5)	177
$\mathrm{O} 2-\mathrm{H} 2 B \cdots \mathrm{O} 3$	0.82	2.06	2.877 (4)	177
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 12$	0.82	2.04	2.859 (4)	179
O3-H3B \cdots O1	0.82	1.98	2.803 (2)	179
$\mathrm{O} 1 X-\mathrm{H} 1 X \cdots \mathrm{O} 21 B$	0.82	2.53	2.92 (2)	111
$\mathrm{O} 2 X-\mathrm{H} 2 X \cdots \mathrm{O} 32^{\text {vi }}$	0.82	1.97	2.733 (19)	154

Figure 1
A view of a portion of the $-\left[\mathrm{Ag}^{+}-\mathrm{Me}_{2} \mathrm{biim}\right]_{n^{-}}$helix. Dashed lines correspond to weak $\mathrm{Ag} i-\mathrm{O} i 1$ and $\mathrm{Ag} i-\mathrm{O} i 3$ bonds with nitrate ions. H atoms have been omitted for clarity. Displacement ellipsoids correspond to the 30% probability level. Only the major component, ' b ', of the disordered nitrate anion is shown. [Symmetry code: (i) $x-1, y, z$.]

Nitrate ion $\mathrm{N} 2 / \mathrm{O} 21 / \mathrm{O} 22 / \mathrm{O} 23$ was found to be disordered over two slightly different orientations. The occupancies were first allowed to refine for a few cycles and then fixed to the normalized 0.70/0.30 values for the rest of the refinement. Restraints were applied to keep the geometry of these fractional nitrates close to that of the nondisordered ions. H atoms were positioned geometrically $[\mathrm{C}-$
$\mathrm{H}($ ring $)=0.93 \AA, \mathrm{C}-\mathrm{H}($ methyl $)=0.96 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA]$ and were included in the refinement in the riding-model approximation; their displacement parameters were set to 1.5 (methyl H atoms) or 1.2 (other H atoms) times $U_{\text {eq }}$ of the parent site. For water molecule O4 (half occupancy), no peaks were visible in the electron density map for the two H atoms, and since no suitable hydrogen-bond acceptors could be identified, they were omitted.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: $U d M X$ (Maris, 2004).

We are grateful to M. Simard for assistance during structure determination, and to the Natural Sciences and Engineering Research Council of Canada and the Ministère de l'Education du Québec for financial support.

References

Bruker (1997). SHELXTL. Release 5.10. Bruker AXS Inc., Madison, USA. Bruker (1999). SAINT (Release 6.06 and SMART (Release 5.059). Bruker AXS Inc., Madison, Wisconsin, USA.
Fieselmann, B. F., Hendrickson, D. N. \& Stucki, G. D. (1978). Inorg. Chem. 17, 2078-2084.
Hester, C. A., Baughman, R. G. \& Collier, H. L. (1997). Polyhedron, 16, $2893-$ 2895.

Maris, T. (2004). UdMX. Université de Montréal, Canada.
Mohanty, R. R., Rout, K. C., Jena, S. \& Dash, K. C. (1994). Polyhedron, 13, 2945-2952.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Therrien, B. \& Beauchamp, A. L. (1999). Acta Cryst. C55, IUC9900054.

